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Abstract
Objective and design Circulating enzymatic activity and RAAS regulation in severe cases of COVID-19 remains unclear, 
therefore we measured the serum activity of several proteases as potential targets to control the SARS-CoV-2 infection.
Material or subjects 152 patients with COVID-19-like symptoms were grouped according to the severity of symptoms 
(COVID-19 negative, mild, moderate and severe).
Methods Serum samples of COVID-19 patients and controls were subjected to biochemical analysis and enzymatic assays 
of ACE2, ACE, DPPIV, PREP and CAT L. One-way ANOVA and multivariate logistic regression analysis were used. Sta-
tistical significance was accepted at p < 0.05.
Results We detected a positive correlation among comorbidities, higher C-reactive protein (CRP) and D-dimer levels with 
disease severity. Enzymatic assays revealed an increase in serum ACE2 and CAT L activities in severe COVID-19 patients, 
while ACE, DPPIV and PREP activities were significantly reduced. Notably, analysis of ACE2/ACE activity ratio suggests 
a possible imbalance of ANG II/ANG(1-7) ratio, in a positive association with the disease severity.
Conclusion Our findings reveal a correlation between proteases activity and the severity of COVID-19. These enzymes 
together contribute to the activation of pro-inflammatory pathways, trigger a systemic activation of inflammatory mediators, 
leading to a RAAS dysregulation and generating a significant damage in several organs, contributing to poor outcomes of 
severe cases.
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Introduction

Novel coronavirus denominated SARS-CoV-2 (severe acute 
respiratory syndrome coronavirus 2), identified as COVID-
19, was first reported in China (December 2019) and rapidly 
spread across the world [1, 2]. SARS-CoV-2 presents an 
enveloped genome composed by a single-stranded RNA, 
which is packaged into a helical nucleocapsid delimited 
by a host-derived lipid bilayer [3]. During the infection, 

coronavirus in general uses the spike protein (S) to interact 
with specific receptors, representing a fine interplay between 
virus and host cells [4, 5].

ACE2 (angiotensin-converting enzyme 2) presents an 
essential role in COVID-19 disease, since it was identified as 
the main receptor to S protein [6]. ACE2 (EC 3.4.17.23) is a 
zinc metalloprotease (carboxypeptidase) [7] with a broad tis-
sue distribution, expressed in heart, intestine, kidneys, lungs 
and other organs [8–10], contributing to essential physiolog-
ical processes such as regulation of cardiovascular system 
and inflammation [11, 12]. Anchored ACE2 is cleaved from 
the membrane by different enzymes, such as ADAM17 (a 
disintegrin and metalloproteinase 17), MMP-14 (matrix 
metalloprotease 14) and TMPRSS2 (transmembrane serine 
protease 2), releasing into circulation the N-terminal ectodo-
main which contains the catalytic site, generating the soluble 
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form (sACE2) [13–15]. Therefore, the proteolytic shedding 
is an important step to predict the differential levels of ACE2 
between the cell protein and the circulating form [13].

In COVID-19, tissues and cells expressing high levels 
of ACE2 are potential targets to SARS-CoV-2 infection, 
therefore, the distribution and amount of ACE2 could be 
closely related to disease severity [10]. In response to the 
virus attachment to ACE2, the complex is internalized into 
the target cell, leading to ACE2 down-regulation (mem-
brane-bound) [16]. As a result, the level of DBK (des-Arg9-
bradykinin) is increased, an ACE2 substrate, resulting in a 
pro-inflammatory reaction promoted by the BDKRB1 (kinin 
B1 receptor) activation [17]. ACE2 also reduces the genera-
tion of ANG II (Angiotensin II) by catalyzing the conver-
sion of ANG I (Angiotensin I) to ANG(1-9) and facilitat-
ing hydrolysis of ANG II to ANG(1-7) [18]. Furthermore, 
reduced ACE2 levels in lung cells expose the tissue to acute 
inflammation [19].

Another close-related protease, ACE (angiotensin-con-
verting enzyme), is highly expressed in endothelial lung 
cells [20] but might be shed from these cells, generating 
a plasmatic soluble form (sACE). ACE (EC 3.4.15.1) is 
a dipeptidyl-carboxypeptidase [21] that converts ANG I 
into ANG II and catalyzes BK (bradykinin) inactivation. 
ACE expression is altered in patients with severe forms of 
COVID-19 [22]. Both RAAS (renin–angiotensin–aldoster-
one system) and KKS (kallikrein-kinin system) pathways 
control vascular permeability and vasodilation, as well as 
inflammation, causing lung dysfunction [12].

The inflammatory response is a determining factor to 
predict the outcome of COVID-19 patients. DPPIV (Dipep-
tidyl peptidase-IV) (EC. 3.4.14.5) and PREP (prolyl endo-
peptidase) (EC 3.4.21.26) are serine peptidases present in 
a soluble form in the circulation, closely associated with 
inflammatory diseases [23, 24]. These multifunctional pro-
teins are broadly expressed in numerous tissues such as gut, 
liver, lung and kidney [25]. The biological activity of DPPIV 
includes the regulation of intracellular signal transduction, 
cell migration and proliferation [26]; and it also functions as 
a cell membrane surface co-receptor for human MERS-CoV 
(middle east respiratory syndrome coronavirus) cell entry 
[27]. PREP cleaves a variety of neuropeptides and hormones 
[28]. Both DPPIV and PREP degrade BK, thus possibly 
modulating signaling pathways in COVID-19. Furthermore, 
recent studies correlate DPPIV and PREP to comorbidities 
and indicate a possible role in COVID-19 severity [29–31].

The recent discover that SARS-CoV-2 life cycle requires 
the activity of an endosomal cysteine protease evidences 
the growing importance of CAT L (cathepsin L) in stud-
ies related to COVID-19 severity [32, 33]. CAT L (EC 
3.4.22.15) is a lysosomal endopeptidase primarily involved 
on the processing and turnover of proteins in acidic com-
partments. Extra-lysosomal activity of CAT L was also 

demonstrated, raising the possibility of a non-canonical 
extracellular function, in a non-acidic condition [34–36]. 
In COVID-19, elevated circulating levels of CAT L were 
detected in critical patients of ICU (Intensive Care Unit) 
[37].

In the present study, using a well-defined group of hos-
pitalized COVID-19 patients and COVID-19 negative con-
trols, we investigated whether the specific serum activities of 
ACE2, ACE, DPPIV, PREP and CAT L could be correlated 
with moderate or severe presentations of the disease. Our 
findings suggest correlations between the enzymatic activ-
ity of such enzymes and COVID-19 severity that could be 
explored in the future as biomarkers, increase the compre-
hension of the disease and pave the way to new therapies.

Material and methods

Ethical approval statement

The procedures performed in this work were conducted 
according to the project approved by the research ethics 
committee of the Federal University of São Paulo (CAAE 
31929120.0.0000.5505).

Patients and clinical samples

A total of 152 patients with COVID-19 symptoms admitted 
to the São Paulo Hospital during the period between July 
2020 and June 2021 were included in this study. In order to 
diagnose COVID-19, samples from upper respiratory tract 
(nasopharyngeal specimens) were collected immediately 
after the admission (day 0) and nucleic acid amplification 
test were performed by qPCR (quantitative polymerase chain 
reaction). The qPCR was performed according to the pro-
tocol established previously [38]. Blood samples were also 
collected in serum collection tubes to evaluate enzymatic 
activity assays.

Clinical screening

The 152 patients were grouped according to the severity of 
symptoms: (1) COVID-19 negative group, which includes 
patients with COVID-19-like symptoms with negative PCR 
test for COVID-19 (56 patients); (2) positive PCR test for 
COVID-19, presenting only mild symptoms (including 
fever, cough, headache, muscle pain, fatigue, nausea, diar-
rhea and others) but without pneumonia (31 patients); (3) 
positive PCR test for COVID-19 patients with moderate, 
respiratory tract symptoms, and chest x-ray confirming 
pneumonia (38 patients); (4) positive PCR test for COVID-
19 patients with severe symptoms, presenting any of the fol-
lowing signs: respiratory distress, oxygen saturation ≤ 94%, 
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arterial blood oxygen partial pressure ≤ 300 mmHg, lung 
infiltrates ≥ 50%, requirement of mechanical ventilation 
and multiple organs dysfunction (27 patients). Patients with 
comorbidities (asthma, obesity, cardiac disease, diabetes and 
other diseases) were classified according to their clinical 
manifestations.

ACE2 enzymatic activity assay

ACE2 catalytic activity was examined in serum samples 
from patients with COVID-19 symptoms (mild, moderate 
and severe groups) and from COVID-19 negative group. 
ACE2 activity was assessed using a 75 mmol/l Tris buffer 
pH 7.5 containing 50 mmol/l NaCl, 10 µmol/l  ZnCl2 and the 
fluorogenic substrate Mca-Ala-Pro-Lys(Dnp)-OH (5 μmol/l). 
The specific activity was confirmed using 5 µmol/l DX600 
(trifluoroacetate salt) as inhibitor [39]. The enzymatic activ-
ity was monitored in a microplate reader (Molecular Devices 
M2—San Jose, California, USA) for 1 h at 37 °C and fluo-
rescence measured at λex = 320 nm and λem = 420 nm.

ACE enzymatic activity assay

ACE activity was evaluate using 100 mmol/l Tris–HCl, 
50 mmol/l NaCl and 10 µmol/l  ZnCl2, pH 7.0 assay buffer, 
with 10 µmol/l Abz-Phe-Arg-Lys(Dnp)-Pro-OH substrate 
(λex = 320 nm and λem = 420 nm) at 37 °C for 30 min. The 
specificity of the hydrolysis was confirmed by preincuba-
tion of 10 µmol/l lisinopril with samples before the addition 
of substrate. The emitted fluorescence was monitored every 
minute in a microplate reader (Molecular Devices—San 
Jose, California, USA).

ACE polymorphism

To determine ACE polymorphism (I/D alleles) (rs4646994), 
the DNA was extracted from blood samples collected in 
tubes containing EDTA (ethylenediamine tetraacetic acid) 
using Chelex®100 resin (Sigma Aldrich—Darmstadt, Stein-
heim, GER). The genotypes were screened by (PCR) using 
sense primer (5′-GAT GTG GCC ATC ACA TTC GTC AGA 
T-3′) and antisense primer (5′-CTG GAG ACC ACT CCC ATC 
CTT TCT -3′). Conditions for the PCR reactions were 95°C 
for 5 min, 35 cycles at 95°C for 45 s, 59°C for 45 s, 72°C 
for 45 s and a final extension at 72°C for 5 min. Homozy-
gotes DD and II present a fragment with 190 bp and 490 bp, 
respectively, whereas heterozygote ID shows these 2 frag-
ments. The amplified fragments were analyzed on a 2% aga-
rose gel stained with SYBR® Safe DNA gel stain (Invitro-
gen—Waltham, Massachusetts, USA).

DPPIV enzymatic activity assay

DPPIV activity was determined according to previous pub-
lished data [40]. The assays were performed on 50 mmol/l 
HEPES buffer, pH 7.5 with 1 mmol/l of Gly-Pro-p-nitroanilide 
hydrochloride substrate at 37 °C for 30 min. Absorbance was 
evaluated at 405 nm every minute using the direct photometric 
method. DPPIV inhibition was performed pre-incubating the 
samples for 30 min using 100 nmol/l linagliptin, a DPPIV 
inhibitor. Using a microplate reader, the fluorescence emission 
was monitored every minute (Molecular Devices—San Jose, 
California, USA).

PREP catalytic activity assay

The catalytic activity of PREP enzyme was monitored using 
the fluorogenic Z-Gly-Pro-AMC (7-amino-4-methyl coumarin) 
substrate (λex = 320 nm and λem = 420 nm) on 50 mmol/l 
sodium phosphate buffer (pH 7.4), containing 2 mmol/l DTT 
(1,4 dithiothreitol). The KYP 2047 ((2S)-1-[[(2S)-1-(1-Oxo-
4-phenylbutyl)-2-pyrrolidinyl]carbonyl]-2-pyrrolidinecarbon-
itrile) (5 µmol/l) inhibitor was used to confirm the hydrolysis 
specificity. The assays were performed at 37 °C for 1 h and the 
fluorescence emission was assessed every minute in a micro-
plate reader (Molecular Devices—San Jose, California, USA).

Cathepsin L catalytic activity assay

CAT L activity was assessed using a 100 mmol/l sodium ace-
tate buffer, pH 5.5, containing 5 mmol/l DTT and 10 µmol/l 
Z-Phe-Arg-AMC (7-amino-4-methyl coumarin) as fluoro-
genic substrate (λex = 380 nm and λem = 460 nm) at 37 °C. 
The hydrolysis specificity was confirmed using the cysteine 
inhibitor 10 µmol/l E64 (trans-Epoxysuccinyl-l-leucylamido 
(4-guanidino) butane). The enzymatic activity was moni-
tored for 1 h every minute in a microplate reader (Molecular 
Devices—San Jose, California, USA).

Statistical analysis

Categorical variables were represented as number (%) and 
compared using the Chi-square with Fisher's exact tests. Con-
tinuous variables were expressed as mean ± standard devia-
tion (SEM) or as median (IQR -interquartile range). One-way 
ANOVA was used to compare more than two groups, followed 
by Tukey’s multiple comparison test. Multivariate logistic 
regression analysis (relative risk) was conducted to identify 
risk factors, with a 95% confidence interval. All statistical ana-
lyzes were performed using GraphPad Prism software (Graph-
Pad Prism version 6). Statistical significance was accepted at 
p < 0.05 in all analyses.
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Results

Screening of patients

A total of 152 patients with COVID-19 symptoms 
(fever, cough, fatigue, anosmia, headache) admitted to 
the university hospital UNIFESP, between July 2020 
and June 2021, were included in this study. The patients 
were screened according to age, gender, ethnicity and 
comorbidities (Table 1), and subdivided in four groups 
according with the levels of symptoms: (1) patients 
with COVID-19-like syndrome and qPCR negative for 
COVID-19; (2) patients with mild symptoms; (3) patients 
with moderate symptoms admitted to the infirmary; (4) 
patients with severe symptoms, admitted in ICU. Patients 
from the group 2–4 were qPCR positive for COVID-19.

Predicting severity factors in COVID‑19 disease

To investigate the correlation between comorbidities and the 
probability to develop severe condition of disease, we per-
formed an associative measurement in patients with COVID-
19 (confirmed by PCR test). Univariate logistic regression 
was used to measure RR (relative risk) of experiencing 
severe condition in patients of mild and severe groups with 
comorbidities, including metabolic disease (diabetes, obe-
sity and dyslipidemia), hypertension, heart disease, chronic 
kidney disease and smoking. Relative risk was significantly 
high in patients with comorbidities in the severe group when 
compared to mild group (metabolic disease: RR, 2.17; 95.0% 
Cl, 1.72–2.74; hypertension: RR, 3.16; 95.0% CI, 1.67–5.97; 
chronic kidney disease: RR, 2.4; 95.0% CI, 1.58–3.65; 
smoking: 1.93; 95.0% CI, 1.21–3.07) (Fig. 1a).

Posteriorly, considering the association between higher 
concentrations of CRP (c-reactive protein) (an earlier marker 
of infection and inflammation) with severity of COVID-19 

Table 1  Demographics and 
clinical characteristics of the 
152 patients with COVID-19 
and controls

# Race/Ethnicity was self-declared by the patients
a Included cardiac insufficiency, stroke
b Diabetes, obesity and dyslipidemia
c Asthma, bronchitis, tuberculosis
d HIV, transplanted (kidney), systemic lupus erythematosus
e Cirrhosis, hepatic steatosis, autoimmune hepatitis, rheumatoid arthritis, arthrosis, hypothyroidism, diver-
ticulitis, psoriasis, epilepsy, dementia, depression

Characteristics (number, %) COVID-19 
Negative 
(n = 56)

Mild (n = 31) Moderate (n = 38) Severe (n = 27)

Age (years) (mean, extremes, SD) 38.6 [18–64]
 ± 12.1

41.5 [20–65]
 ± 13.9

52.1 [20–88]
 ± 16.9

60.8 [41–77]
 ± 10.0

Sex
 Male 24 (42.9) 16 (51.6) 17 (44.7) 16 (59.3)
 Female 32 (57.1) 15 (48.4) 21 (55.3) 11 (40.7)

Race/Ethnicity#

 Afrodescendant 4 (7.1) – 7 (18.4) 1 (3.7)
 Caucasian 17 (30.4) 17 (54.8) 16 (42.1) 17 (63.0)
 Pardo 12 (21.4) 9 (29.0) 12 (31.6) 9 (33.3)
 Others 4 (7.1) 2 (6.5) – –
 Not declared 19 (33.9) 3 (9.7) 3 (7.9) –

Smoker 3 (5.4) 2 (6.5) 12 (31.6) 8 (29.6)
Comorbidities
 No 32 (73.2) 19 (67.7) 5 (13.2) 4 (14.8)
 Heart  diseasesa 2 (3.6) 3 (9.7) 4 (10.5) 7 (25.9)
 Hypertension 11 (19.6) 5 (16.1) 19 (50.0) 19 (70.4)
 Metabolic  diseaseb 4 (7.1) 2 (6.5) 22 (57.9) 20 (74.1)
 Chronic Kidney Disease 1 (1.8) 1 (3.2) 10 (26.3) 10 (37.0)
 Lung  diseasesc 3 (5.4) – 3 (7.9) 3 (11.1)
  Immunosuppressedd 1 (1.8) 1 (3.2) 12 (31.6) 7 (25.9)
 Malignancy – – 3 (7.9) 3 (11.1)
  Otherse 2 (3.6) 1 (3.2) 13 (34.2) 4 (14.8)
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disease [41], we examined the RR in patients (mild and 
severe groups) with elevated levels of CRP. The analy-
ses demonstrated an increase of RR in patients with high 
levels of CRP protein (values above 101 mg/l) (CRP: RR, 
6.8; 95.0% CI, 3.02–15.28) (Fig. 1a). Furthermore, since 
moderate and severe groups present a higher probability to 
develop severe disease condition, mortality rate was evalu-
ated in patients with CRP concentrations above of average 
(101 mg/l). Patients with elevated levels of CRP presented a 
positive correlation with mortality rate (Fig. 1b).

Another factor correlated to COVID-19 severity is 
D-dimer, an important coagulation marker, which is one of 
the products of fibrin degradation. Previous data indicate 
that concomitant high levels of D-dimer and CRP could be 
used as a prognosis for severe cases [42]. Here, we observed 
that the patients with elevated D-dimer and CRP levels are 
indicative of significant disease progression in COVID-19 
(Fig. 1c).

ACE2 catalytic activity

ACE2 catalytic activity was measured in serum of patients 
with COVID-19 and in negative COVID-19 group using 
fluorogenic Mca-Ala-Pro-Lys(Dnp)-OH substrate. The 
analysis demonstrated increased ACE2 enzymatic activity in 
moderate and severe groups when compared to COVID-19 
negative and mild groups (Fig. 2). The hydrolysis specificity 
was confirmed using DX600 inhibitor (5 µmol/l).

ACE enzymatic activity and polymorphism 
genotyping

Serum ACE activity was measured by a kinetic spec-
trophotometric assay using fluorogenic Abz-Phe-Arg-
Lys(Dnp)-Pro-OH substrate. ACE catalytic activity was 
compared among the groups according to illness sever-
ity (Fig. 3). A significant difference in ACE activity was 

Fig. 1  Predicting severity factors in COVID-19 disease. a Summary 
plot of relative risk (RR) in patients with comorbidities (n = 56) of 
mild and severe groups by univariate logistic regression. b) Mortal-
ity rate versus CRP levels in patients of moderate and severe groups 
(n = 58). Median: 101  mg/dl. Quartile 1: < 54  mg/dl. Quartile 2: 
54—101 mg/dl. Quartile 3: > 101 < 162 mg/dl. Quartile 4: ≥ 162 mg/
dl. c Frequency of D-dimer concentrations in patients with increased 

levels of CRP (> 101  mg/dl) (n = 50). Median: 1.9  µg/ml. Quartile 
1: < 1.2  µg/ml. Quartile 2: 1.2–1.9  µg/ml. Quartile 3: > 1.9 < 2.7  µg/
ml. Quartile 4: ≥ 2.7 µg/ml. Statistical significance was evaluated by 
multivariate logistic regression analysis (relative risk), with a 95% 
confidence interval. An asterisk (*) denotes statistical significance 
(p < 0.05)
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detected between COVID-19 negative and in patients with 
moderate or severe forms of the disease. The hydrolytic 
activity was completely inhibited by lisinopril (10 µmol/l), 

indicating the assay specificity. Patients treated with anti-
hypertensive medication (ACE inhibitors) were excluded 
from the analysis. Therefore, our results show a decreased 
ACE activity in patients with more severe forms of 
COVID-19.

The genotype and allele frequency of the ACE polymor-
phism (I/D) were analyzed according to symptoms sever-
ity (Table 2). ID genotype was more prevalent (51.9% in 
the severe group, 50% in COVID-19 negative, 48.4% and 
45.2% in moderate and mild groups, respectively), fol-
lowed by DD and II genotypes in the patients. Thus, the 
D allele frequency was the most predominant in all the 
groups (Table 2). No statistical significance was observed 
between genotype or allele frequencies and COVID-19 
severity in the analyzed groups.

Posteriorly, we compared ACE enzymatic activity 
among patients with and without COVID-19, accord-
ing to ACE polymorphism genotype (DD or ID + II) 
(Fig. 4). Within the group COVID-19 negative, the DD 
genotype has higher ACE activity when compared with 
ID + II genotypes, however this difference was not found 
within the group of patients with COVID-19. Consider-
ing only the DD genotype, the serum ACE activity in 
COVID-19 patients was significantly lower when com-
pared to COVID-19 negative, similarly observed in ID + II 
genotypes.

ACE2/ACE enzymatic activity ratio

Given that an imbalance in the ACE2/ACE ratio could be 
a risk factor for COVID-19 worsening [43, 44], the ACE2/
ACE (soluble forms) ratio activity was compared between 
the COVID-19 (mild, moderate and severe groups) and 
negative groups. The results revealed an increase of the 
ACE2/ACE ratio only in ICU (severe patients) when com-
pared to the other groups (Fig. 5). These data suggest that 
possibly an imbalance of RAAS might contribute to the 
worsening of symptoms and to the poor outcome of dis-
ease [43–45].

Fig. 2  ACE2 activity in serum of COVID-19 patients and controls. 
ACE2 enzymatic activity was measured in serum of patients with 
COVID-19-negative and in mild, moderate and severe groups. The 
patients were grouped according to symptoms levels. The assays were 
performed at 37  °C using the fluorescent Mca-Ala-Pro-Lys(Dnp)-
OH substrate (5  µmol/l). Statistical significance was evaluated by 
ANOVA test. *p < 0.05, **p < 0.01, *** p < 0.001, **** p < 0.0001

Fig. 3  ACE enzymatic activity in COVID-19 patients and controls. 
ACE activity was measured in the serum of patients with COVID-19 
disease using the fluorogenic substrate Abz-Phe-Arg-Lys-(Dnp)-Pro-
OH (10  µmol/l). Statistical significance was estimated by ANOVA 
test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001

Table 2  The genotype and 
allele frequency of the ACE I/D 
polymorphism of COVID-19 
negative group and patients 
infected with SARS-CoV-2

The p value was established according to the proportions of the categorical variables analyzed by Chi-
square test. p < 0.05 was considered statistically significant
# DD vs ID + II

Frequency 
(number, %)

COVID-19 Nega-
tive (n = 56)

Mild (n = 31) Moderate (n = 31) Severe (n = 27) p-(value)

II 10 (17.9) 8 (25.8) 5 (16.1) 3 (11.1) 0.9137#

ID 28 (50.0) 14 (45.2) 15 (48.4) 14 (51.9)
DD 18 (32.1) 9 (29.0) 11 (35.5) 10 (37.0)
I allele 48 (42.9) 30 (48.4) 25 (40.3) 20 (37.0) 0.6448
D allele 64 (57.1) 32 (51.6) 37 (59.7) 34 (63.0)
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DPPIV and PREP catalytic activity assay

The activities of DPPIV and PREP enzymes were evalu-
ated in serum of COVID-19 patients compared to negative 
COVID-19 group control. Our data showed that a significant 
decrease of DPPIV and PREP activity in patients of moder-
ate and severe groups when compared to negative COVID-
19 controls and patients with mild symptoms (Figs. 6 and 7). 
The hydrolysis specificity was confirmed with the complete 
inhibition of activity in presence of linagliptin (100 nmol/l) 
and KYP-2047 (5 µmol/l), DPPIV and PREP inhibitors, 

respectively. These data suggest a possible negative cor-
relation between serum DPPIV and PREP activities with 
COVID-19 severity.

CAT L enzymatic activity in COVID‑19 patients

CAT L activity was monitored in serum of COVID-19 
patients and in negative COVID-19 group. The results 
demonstrated that patients with moderate or severe symp-
toms presented a significant increase of CAT L activity 
when compared to patients of negative COVID-19 or mild 

Fig. 4  Correlation of ACE activity and polymorphism. The ACE 
activity of patients according to genotype (DD vs ID + II) were 
grouped in COVID-19 negative and COVID-19 positive groups 
(mild, moderate and severe groups). Statistical significance was 
estimated by ANOVA test. *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001

Fig. 5  Comparative ACE2/ACE ratio in COVID-19 groups and con-
trols. The ACE2 and ACE enzymatic activities ratio was evaluated 
in each patient separately. The patients were grouped in COVID-19 
negative and COVID-19 positive groups (mild, moderate and severe 
groups). Statistical significance was estimated by ANOVA test. 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001

Fig. 6  DPPIV activity in COVID-19 patients and controls. DPPIV 
enzymatic activity was assessed in serum of COVID-19 patients 
using Gly-Pro-p-nitroanilide hydrochloride substrate (1  mmol/l). 
Statistical significance was assessed by ANOVA test. *p < 0.05, 
**p < 0.01, *** p < 0.001, **** p < 0.0001

Fig. 7  Enzymatic activity of PREP (prolyl-endopeptidase). PREP cat-
alytic activity was monitored in serum of COVID-19 patients and in 
negative group. The enzymatic assays were performed using fluoro-
genic substrate Z-Gly-Pro-AMC (5  µmol/l). Statistical significance 
was measured by ANOVA test. *p < 0.05, **p < 0.01, *** p < 0.001, 
**** p < 0.0001
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symptomatic group (Fig. 8). The hydrolysis specificity was 
confirmed with complete inhibition of activity in presence 
of E64 inhibitor. These results suggest a possible association 
between increased CAT L activity and the clinical condition 
of the patients.

Discussion

Proteases perform essential roles in many biological pro-
cesses and the inhibition of enzymatic activity has been 
described as an important step, regulating numerous path-
ways [46]. In COVID-19, some enzymes are investigated as 
promising targets to prevent SARS-CoV-2 spread [47, 48]. 
Among the signaling pathways involved in viral infection, 
virus entry in the host cells mediated by the spike protein, 
represents a critical step to disease development [49].

The S protein contains two distinct domains: S1, respon-
sible for receptor binding to the host receptor and S2 
domain, that mediates the membranes fusion with the host 
cells [50–52]. Specifically, the S1 RBD (receptor binding 
domain) of SARS-CoV-2 directly binds to PD (peptidase 
domain) of ACE2 [53].

The sACE2 usually circulates in low concentrations [54, 
55], leading some authors to investigate the relationship 
between circulating ACE2 activity and COVID-19 disease 
severity [56–58]. The activity of circulating ACE2 is asso-
ciated with disease severity and mortality [57]. Therefore, 
we first investigated circulating ACE2 enzymatic activity in 
serum of COVID-19 patients. Additionally, we examined 
the activity of ACE, DPPIV and PREP, enzymes involved 

in cardiovascular and renal diseases (frequently observed 
in patients infected with coronavirus), and inflammatory 
response. The activity of CAT L was also measured due to 
the importance of enzymatic activation of S protein in virus 
entry in the host cells. We evaluated these enzymatic activi-
ties in 152 patients recruited for this study, separated in four 
groups: COVID-19 negative group (patients with COVID-
19 symptoms with negative PCR test), mild, moderate and 
severe COVID-19 groups.

Regarding the comorbidities, the analyses demonstrated 
an increase of relative risk (RR) of experiencing severe 
forms of COVID-19 in patients with comorbidities, includ-
ing metabolic disease (diabetes, obesity and dyslipidemia), 
hypertension, heart disease, chronic kidney disease and 
smoking comparing with patients without comorbidities. 
The comparison between mild and moderate groups showed 
the same profile observed in severe group, maintaining the 
increased probability of comorbidities occurrence (Fig. 1a). 
The analyses also showed a positive correlation between 
mortality rate and high levels of CRP (Fig. 1b) and D-dimer 
(Fig. 1c), corroborating previously published data [41, 59].

Subsequently, we evaluated ACE2 activity in the serum 
of COVID-19 groups. The results demonstrated elevated 
enzymatic activity in the moderate and severe groups when 
compared to mild and COVID-19 negative groups (Fig. 2). 
These results corroborate already published data showing 
the correlation between elevated levels of circulating ACE2 
and COVID-19 severity [57, 60], suggesting that increased 
ACE2 may predispose to severe forms of COVID-19 disease 
[61]. The blockade of ACE2 and S protein interaction has 
been described as a promisor target to the development of 
anti-COVID-19 drugs [62–64].

Cleavage of S1 domain is an important process to expose 
the fusion peptide, which is a critical mechanism for mem-
branes fusion, allowing virus entry [65]. This cleavage is 
acid-dependent and is accomplished by several host pro-
teases, including cathepsins [66]. Here, we measured CAT 
L catalytic activity, and as observed for ACE2, moderate and 
severe groups presented higher activity compared to mild 
and negative COVID-19 groups (Fig. 8). Data from litera-
ture demonstrated that the inhibition of CAT L using E64 
and K777 irreversible inhibitors (in vitro) results in reduced 
virus replication [37, 67], suggesting a possible proteolytic 
activation mechanism of spike protein by CAT L [52, 68, 
69].

Contrasting to ACE2 and CAT L, our findings show 
decreased activity of ACE in moderate and severe groups 
(Fig. 3). Reduced ACE activity might cause KKS imbalance, 
consequently generating BK accumulation and BK storm 
[70]. This maintenance of inflammatory response mediated 
by ACE has been associated to progression of COVID-
19 [61, 71]. However, the correlation between ACE and 
COVID-19 severity is conflicting in the literature [72–74].

Fig. 8  CAT L activity in serum of COVID-19 patients and controls. 
CAT L enzymatic activity was evaluated in serum of patients with 
COVID-19 negative, mild, moderate and severe symptoms. These 
patients were grouped according to symptoms levels. The experi-
ments were performed using the fluorescent Z-Phe-Arg-AMC sub-
strate (100 µmol/l). Statistical significance was evaluated by ANOVA 
test. *p < 0.05, **p < 0.01, *** p < 0.001, **** p < 0.0001
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Moreover, we also investigated a possible correla-
tion between ACE polymorphism (I/D) with COVID-19 
severity. Our results show that ID genotype was the most 
prevalent among the groups investigated. The frequency 
of D allele was the most predominant, however, no sta-
tistical significance was observed between genotype or 
allele frequencies with COVID-19 severity (Table 2). 
The direct association of ACE I/D polymorphism with 
COVID-19 severity is also conflicting in the literature 
data [75–78]. Posteriorly, the correlation between ACE 
polymorphism (I/D) with ACE enzymatic activity was also 
investigated, since several authors associated DD geno-
type with increased ACE activity [79–81]. As expected, 
regarding the COVID-19 negative group, the DD geno-
type has increased ACE activity compared to ID + II geno-
types, but this difference is not observed in the COVID-
19 group (Fig. 4), corroborating a previous report [78]. 
When comparing specifically the genotypes, the analyses 
demonstrated that patients with COVID-19, both DD and 
ID + II genotypes present lower ACE activity, indicat-
ing that decreased ACE activity is only correlated with 
COVID-19 severity.

RAAS dysregulation has been associated with the wors-
ening of COVID-19 symptoms [43, 82, 83]. Reduced levels 
of soluble ACE and increased circulating ACE2 activity pro-
motes higher ACE2/ACE ratio. In contrast, reduced levels 
of membrane ACE2 and an increase of local ACE activ-
ity results in reduced local ACE2/ACE ratio, favoring ACE 
axis in the system [43]. Thus, RAAS dysregulation leads 
to the overactivation of the AT1R (Ang II–angiotensin II 
type I receptor) axis, which is characterized by a prominent 
vasoconstriction, triggering profibrotic and proinflammatory 
signalization in the lungs and others organs [18, 43]. Here, 
increased ACE2/ACE ratio was observed only in the severe 
group (Fig. 5), suggesting that this imbalance could influ-
ence the worsening of symptoms and the poor outcome of 
the disease.

In addition to the RAAS impact in COVID-19, the 
inflammatory response plays a significant role in predicting 
the outcome of patients. Our analyses of DPPIV (Fig. 6) 
and PREP (Fig. 7) showed decreased activity of both pepti-
dases in moderate and severe groups. Both PREP and ACE2 
converts the pro-inflammatory ANG II into ANG(1-7), an 
anti-inflammatory peptide. Whereas ACE2 is more promi-
nent in the kidney and lung, PREP is the main peptidase 
performing this conversion in the systemic circulation [84], 
suggesting a potential contribution for regulation of ANG 
II levels in COVID-19 [85]. The direct association between 
ANG II and inflammation is clearly recognized, since ANG 
II initiates inflammatory cascades and triggers the activation 
of many pro-inflammatory mediators, including ROS (reac-
tive oxygen species), NF-κB (nuclear factor kappa B), CRP 
and others [86–89].

Previously published data demonstrated that in inflam-
matory diseases, the process of releasing DPPIV from the 
cell surface is inhibited, as observed in septic shock, ath-
erosclerosis and COVID-19 [90, 91]. These findings cor-
roborate our results, showing that patients with moderate 
and severe form of COVID-19 present lower activity of cir-
culating DPPIV. These findings showing reduced circulat-
ing DPPIV in hospitalized patients with SARS-CoV-2 might 
help to comprehend the specific function of this enzyme in 
COVID-19 [92]. Accordingly, several studies investigated 
whether DPPIV inhibitors (DPPIVi) could affect the clinical 
course of COVID-19 disease [93–96]. Meta-analyses studies 
suggest that the use of DPPIVi in patients with COVID-19 
result in a reduction of mortality and clinical improvement, 
mostly in patients with type 2 diabetes, while some studies 
showed no effects of DPPIVi [92, 95, 96]. Other data also 
suggest a reduction in mortality and severity of COVID-
19 in patients using the antidiabetic drug metformin and/
or renin-angiotensin system blockers when combined with 
DPPIV inhibitor, despite benefit of the DPPIVi is less pro-
nounced when associated with these two drugs [95, 96]. 
However, the exact association between DPPIV, DPPIVi 
and coronavirus remains unclear.

Altogether, it is not surprising that the interaction of some 
enzymes with SARS-CoV-2 is an important regulatory fac-
tor for COVID-19 pathophysiology. Differential profile of 
some proteases has been reported in patients with COVID-
19 and associated with clinical complications. In this con-
text, the ACE2 has a central importance in the pathogenesis, 
both as coronavirus receptor and acting in the post-infection 
phase [48]. Computational approaches demonstrated that 
DPPIV also interacts with the spike protein of SARS-CoV-2, 
suggesting that another enzyme might play a relevant role 
in virus entry [48]. The viral replication and activation/
cleavage of the spike protein is also dependent of proteases, 
such as ACE2 and CAT L [67, 69]. Mediated by CAT L, 
the virus achieves the cytoplasm and the infection is estab-
lished, causing an extensive inflammatory response [68]. 
Then, the immune system presents a crucial contribution, 
as the cytokine storm leads to tissue damage, multiple organ 
failure and death [48]. Most of this damage is due to the 
activation of pro-inflammatory pathways, mainly pulmonary 
and renal, including increased levels of ANG II [84]. ACE 
acts directly in the conversion of ANG I to ANG II, while 
ACE2 and PREP convert ANG II to ANG-(1-7), suggesting 
a potential dysregulation in the expression/shedding con-
trol of these enzymes and the RAAS in COVID-19 patients 
[71, 85]. The present findings suggest a possible correlation 
between enzymatic activity and disease severity (Fig. 9). 
Taken together, our data show that COVID-19 severity 
impacts the activity of different proteases in the blood and 
therefore the knowledge about this control might contribute 
to a better understanding of SARS-CoV-2 infection.
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